
Math Camp 2020 - Analysis (Reference)∗

Sarah Robinson

Department of Economics, UC Santa Barbara

1. Topology

(a) Aside. We very briefly mentioned the concept of a field, i.e., a non-empty set equipped with
addition and multiplication. With another assumption (that of completeness, which we won’t
discuss) lets us build all of calculus on the foundation of the real numbers. For what follows,
we will consider the real numbers to be the universe of discourse.

(b) Definition. A convex combination is a linear combination of points where all coefficients are
non-negative and sum to one.

(c) Example. Consider points (possibly vectors) x, y, and z. A general convex combination, which
can be denoted w, is

w = k1x + k2y + k3z

where k1 + k2 + k3 = 1 and ki ≥ 0, i = 1, 2, 3.

(d) Definition. A set A ⊆ Rn is convex if and only if αx + (1 − α)y ∈ A for all x,y ∈ A and
α ∈ [0, 1]. In other words, a set is convex if whenever it contains two vectors, it contains the
line connecting them as well.

(e) Example.

A Convex Set A Non-Convex Set

Of any two points we pick in the unit circle on the left, the straight line drawn between them
will fall entirely within the circle. In the crescent shape on the right, there exist points in the
set (e.g., the tips of the points) such that the line draw between them contains points not in in
the set.

(f) Example. Consider the points in the set A defined as

A = {x|x ∈ R ∧ −1 ≤ x ≤ 1}

which is the close interval [−1, 1]. We can prove that this set is convex by using the definition.
To show: z = tx+ (1− t)y ∈ A

∗These lecture notes are drawn principally from the mathematical appendices from Microeconomic Theory, by Andreu
Mas-Colell, Michael D. Whinston, and Jerry R. Green, and Advanced Microeconomic Theory, by Geoffrey A. Jehle and Philip
J. Reny. The material posted on this website is for personal use only and is not intended for reproduction, distribution, or
citation. James Banovetz created the first edition of these awesome notes and graciously shared them.
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Proof:

Let x, y ∈ A and z = tx+ (1− t)y for t ∈ [0, 1] (by hypothesis)

=⇒
(
− 1 ≤ x ≤ 1

)
∧
(
− 1 ≤ y ≤ 1

)
(by def. of A)

=⇒
(
− t ≤ tx ≤ t

)
∧
(
− (1− t) ≤ (1− t)y ≤ 1− t

)
(multiplying by t and 1− t)

=⇒ −1 ≤ tx+ (1− t)y ≤ 1 (summing)

=⇒ −1 ≤ z ≤ 1 (by def. of z)

=⇒ z ∈ A (by def. of A)

(g) Theorem (JR THM A1.1). Let S and T be convex sets in Rn. Then S ∩ T is a convex set.

(h) Example. Consider the graphical representation of two sets:

S T

Intersection: S ∩ T

The intersection of the sets is clearly a convex set. While this does not suffice as a proof of the
theorem, it should help solidfy the idea. Now consider a similar proposition: If S and T are
convex sets, then S ∪ T is convex. This is NOT a true statement. Consider two disjoint sets:

S T

S ∪ T

Clearly, this is not a convex set.

(i) Aside. Recall our typical shape of indifference curves, e.g.,

An agent with this indifference curve is indifferent to everything on the curve, and strictly prefers
everything above and to the right of the curve. Note that the “just as good as” set is thus a
convex set! This ends up being a key assumption, that preferences are convex. When we make
the assumption of convex preferences, moreover, we’re invoking the set notion of convexity.
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(j) Definition. Given a set B ⊆ Rn, the convex hull of B, denoted Co(B), is the smallest convex
set containing B, that is, the intersection of all convex sets that contain B:

Co(B) =

{
y
∣∣∣y =

J∑
j=1

αjxj,
(
xj ∈ B ∀ j

)
∧
(
αj ≥ 0 ∀ j) ∧

J∑
j=1

αj = 1

}

Alternatively, the convex hull of B is the set of all convex combinations of points in B.

(k) Example. Consider one of the non-convex sets from a previous example:

A Non-Convex Set The Convex Hull

The set on the left is non-convex; the set on the right is convex (it’s the set of all convex
combinations of points in the first set). This is the smallest convext set containing everything
in B.

(l) Example. Consider the following two-player prisoners’ dilemma from game theory:

C D

C (3, 3) (1, 4)

D (4, 1) (1, 1)

The set of payoff profiles is {(1, 1), (1, 4), (4, 1), (3, 3)}. The convex hull of the payoff profiles
can be described graphically:

(1,1)

(1,4)

(3,3)

(4,1)

(m) Definition. The epsilon-neighborhood (or ε-ball) with center x and radius ε is the subset of
points in Rn defined as

Bε(x) = {y|y ∈ Rn 3 d(x,y) < ε}

(n) Example. Let our universe of discourse be R, equipped with the metric d(x, y) = |x− y|. Then
the epsilon-neighborhood around 0 is given by:

Bε(0) = {y|y ∈ R 3 −ε < y < ε}

i.e., the open interval (−ε, ε). We can think about higher dimensions as well. Consider R2 with
the euclidean metric. Then the epsilon-neighborhood around the point x = (1, 1) is given by:

Bε(x) = {y|y ∈ R2 3 ||y − x||2 < ε}

Graphically, this may be represented:
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Where the radius of the circle is equal to ε.

(o) Definition. Let S ⊆ Rn. S is an open set if and only if for all x ∈ A, there exists some ε > 0
such that Bε(x) ⊆ S.

(p) Example. Consider the set S formed by the open interval (a, b), i.e., S = {x|a < x < b}. We
can prove this is an open set.

• Def. of subset: Bε(x) ⊆ S if and only if y ∈ Bε(x) =⇒ y ∈ S
To show: y ∈ S
Proof:

Let x ∈ S and ε = min{b− x, x− a} (by hypothesis)

Consider Bε(x) = (x− ε, x+ ε) (defining an ε-ball)

Let y ∈ (x− ε, x+ ε) (by hypothesis)

=⇒ x− ε < y < x+ ε (by def. of an open interval)

=⇒ x− (x− a) < y < x+ (b− x) (by def. of ε)

=⇒ a < y < b (simplifying)

=⇒ y ∈ S (by def. of S)

�

The intuition behind this proof (and behind any open-set proof) is that for any point we pick
in the set, we can always draw a tiny circle around the point that lies entirely within the set.

(q) Theorem (JR THM A1.2). The following sets in Rn are open sets:

i. The empty set ∅

ii. The entire space Rn

iii. The union of any number of open sets

iv. The intersection of any finite number of open sets

(r) Definition. Let S ⊆ Rn. S is a closed set if and only if its complement Sc is an open set.

(s) Example. Consider the closed interval I = [a, b] ⊆ R. The complement is Ic = (−∞, a)∪(b,∞),
which is the union of two open sets. Thus, I is closed.

(t) THM (JR THM A.1.4). The following sets in Rn are closed sets:

i. The empty set ∅

ii. The entire space Rn

iii. The union of any finite collection of closed sets

iv. The intersection of any number of closed sets
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(u) THM (JR THM A1.9) Let D ⊆ Rn. D is closed if and only if for every sequence {xn}∞n=1 such
that xn ∈ D for all n and xn → x, it is also the case that x ∈ D.

(v) Definition. A set S ⊆ Rn is bounded if and only if there exists an M and a point x ∈ Rn such
that S ⊆ BM(x). That is, there exists an M -ball that contains all of S.

(w) Theorem (JR THM A1.8). A set S ⊆ Rn is compact if and only if it is closed and bounded.
This is known as the Heine-Borel Theorem.

(x) Aside. Note that compactness actually is a topological concept all on its own. The Heine-Borel
Theorem establishes that that is equivalent to a set being closed and bounded. For our purposes,
it is sufficient to work with the result from the preceding theorem.

(y) Example. We can prove that the set formed with the unit circle as its boundary, defined formally
as

S = {(x, y)|(x, y) ∈ R2 ∧ x2 + y2 ≤ 1}

is a compact set.

• Theorem (T1): If an → a and bn → b, then an + bn → a+ b and anbn → ab

• Theorem (T2): D is closed iff every convergent sequence of points in D has a limit in D

• Lemmna (L1): If an → a, then an ≤ b for all n implies a ≤ b.

To show: S is closed
Proof:

Let (xn, yn) ∈ S ∀n such that (xn, yn)→ (x, y) (by hypothesis)

=⇒ x2n + y2n ≤ 1 (by def. of S)

=⇒ (x2n, y
2
n)→ (x2, y2) (by T1)

=⇒ x2n + y2n → x2 + y2 (by T1)

=⇒ x2 + y2 ≤ 1 (by L1)

=⇒ (x, y) ∈ S (by def. of S)

=⇒ S is closed (by T2)

To show: S is bounded

Proof:
Let (x, y) ∈ S (by hypothesis)

Let M = 2 (by hypothesis)

=⇒ x2 + y2 ≤ 1 (def. of S)

=⇒ (x2 ≤ 1) ∧ (y2 ≤ 1) (x2 ≥ 0 ∀x)

=⇒ (−1 ≤ x ≤ 1) ∧ (−1 ≤ y ≤ 1) (algebra)

=⇒ (−2 ≤ x ≤ 2) ∧ (−2 ≤ y ≤ 2) (algebra)

=⇒ (−M ≤ x ≤M) ∧ (−M ≤ y ≤M) (algebra)

=⇒ S is bounded (by def. of bounded)

Thus, S is closed and bounded, implying that S is compact. �

(z) Aside. Note that we can also define openess and closedness relative to other spaces. For example,
S ⊆ Rn is open relative to D ⊆ Rn (the non-negative orthant) if and only if for every x ∈ S
there exists an ε > 0 such that Bε(x) ∩D ⊆ S. This comes in most handy for defining openess
relative to the non-negative orthant, where we’d only consider the part of the ε-ball that fell
within R+. Closedness relative to D is defined analoguosly, with D − S in place of Sc.
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2. Continuity and Differentiability

(a) Definition. Let f be a function with domain D(f). The limit of f as x approaches x0 is L if
and only if

∀ ε > 0 ∃ δ > 0 3 d(x− x0) < δ =⇒ d(f(x),L) < ε

In this case we write lim
x→x0

f(x) = L. A function is continuous at x0 ∈ D(f) if and only if

∀ ε > 0 ∃ δ > 0 3 d(x− x0) < δ =⇒ d(f(x), f(x0)) < ε

f is a continuous function if it continuous at every point in its domain.

(b) Theorem. Let f : S → R be a continuous, real-valued function where S is non-empty, compact
subset of Rn. Then there exists a vector x ∈ S and a vector x ∈ S such that

∀x ∈ S, f(x) ≤ f(x) ≤ f(x)

That is, a continuous function f(x) attains a maximum and a minimum on every compact set.
This is known as the (Weierstrass) Extreme Value Theorem.

(c) Theorem. Let S ⊆ Rn be a non-empty compact, convex set. Let f : S → S be a continuous
function. Then there exists at least one fixed point of f in S, that is, there exists x∗ ∈ S such
that f(x∗) = x∗. This is known as the (Brouwer) Fixed Point Theorem.

(d) Aside. We won’t spend too much time on these theorems, but you definitely need to be familiar
with them moving forward. The first guarantees the existence of the maximum and the minimum
of functions on compact sets–think about constrained optimization and (compact) budget sets,
and it should be clear why this is important. Fixed points will come up in a major way during
game theory (Nash Equilibria) and macro economics (convergence of dynamic programs).

(e) Definition. Let f be a function defined on an interval (a, b) ⊆ R and let c ∈ (a, b). Then f is
differentiable at c if and only if the limit of

lim
x→c

f(x)− f(c)

x− c
exists and is finite. If this is the case, then the limit is called the derivative of f and c and is
denoted f ′(c) or df(c)

dx
. For a multivariate functions f(x) where x ∈ Rn, the partial derivative

of f with respect to xi is given by:

∂f

∂xi
= lim

h→0

f(x1, . . . , xi + h, . . . xn)− f(x1, . . . , xi, . . . xn)

h

and is sometimes denoted fi(·)

3. Additional Sets

(a) Definition. Let f be a real valued function such that f : D → R where D ⊆ Rn. Then L(x0) is
a level set relative to x0 if and only if

L(x0) =
{
x|x ∈ D ∧ f(x) = f(x0)

}
6



(b) Example. This concept is intimately connected to our notion of indifference curves and iso-
quants. Indeed, both are simply level sets for the appropriate functions–utility and production,
respectively. Consider the indifference curves for u(x1, x2) = x

1/2
1 x

1/2
2 :

x1

x2

x
y

x = (1, 4) and u(x) = 2

y =
(
32, 1

2

)
and u(y) = 4

All the points on the curve running through x give a utility of 2, while all those on the curve
running through y provide a utility of 4.

(c) Definition. Let be a real valued function such that f : D → R where D ⊆ Rn. Then relative to
a point x0:

• S(x0) =
{
x|x ∈ D ∧ f(x) ≥ f(x0)

}
is the superior set relative to x0

• I(x0) =
{
x|x ∈ D ∧ f(x) ≤ f(x0)

}
is the inferior set relative to x0

If the weak inequalities are replaced with strict inequalities, then the sets are the strictly
superior set and strictly inferior set, respectively.

(d) Example. Consider the function u(x1, x2) = x1 + x2. The inferior and superior sets, relative to
x = (2, 2) can be illustrated graphically as:

S(x)

I(x)

x

y

(2, 2)

(e) Aside. Note that these are the sets of of points in the domain that map to points greater/less
than a point in the range. For univariate functions, e.g., y = x2, the superior/inferior sets
are points on the real-number line. For example, the superior set relative to x = −1 is
(−∞,−1) ∪ (1,∞). Draw a picture of the graph to help solidify the idea! Please keep the
idea of superior/inferior sets separate from the following idea:

(f) Definition. Let f : D → R, where D ⊆ Rn and R ⊆ R. The the set of points on and below
the graph of f is defined as

A = {(x, y)|x ∈ D ∧ f(x) ≥ y}
Similarly, the set of points on and above the graph is defined as

B = {(x, y)|x ∈ D ∧ f(x) ≤ y}

(g) Aside. Note that superior/inferior sets are points in the domain, while points relative to graph
are ordered pairs, (n+ 1)-tuples with elements from both the domain and the range.
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(h) Example. Consider the set of points on and above the graph of the function y = x2.

x

f(x)

4. Concavity and Convexity

(a) Definition. Let f : D → R where D is a convex subset of Rn. A function is concave if and
only if for all x0,x1 ∈ D and t ∈ [0, 1]:

f
(
tx0 + (1− t)x1

)
≥ tf(x0) + (1− t)f(x1)

A function is convex if and only if for all x0,x1 ∈ D and t ∈ [0, 1]:

f
(
tx0 + (1− t)x1

)
≤ tf(x0) + (1− t)f(x1)

(b) Aside. We can think about this definition graphically using univariate functions:

f(x)

xConcave

f(x)

xConvex

In the graph on the left, the function lies above convex combination line, so the function is
concave; on the right, the function lies below the convex combination line, so the function is
convex. While drawing pictures helps solidify the intuition, we need to be well versed in the
definition for proofs.

(c) Example. Consider the absolute value function, f(x) = |x|, with the domain being R. We can
prove this is convex using the definition (e.g., via convex combinations of points in the domain).

• The absolute value function |x| =

{
x if x ≥ 0

−x if x < 0

• Theorem (T1): |ab| = |a||b|

• Theorem (T2): The triangle inequality, |a+ b| ≤ |a|+ |b|
To show: f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

8



Proof:

Let x, y ∈ R ∧ t ∈ [0, 1] (by hypothesis)

f(tx+ (1− t)y) = |tx+ (1− t)y| (by def. of f(x))

≤ |tx|+ |(1− t)y| (by T2)

= t|x|+ (1− t)|y| (by t ≥ 0)

= tf(x) + (1− t)f(y) (by def. of f(x))

�

(d) Theorem (JR THM A1.13 and A1.17). Let f : D → R, where D ⊆ Rn and R ⊆ R. Let A be
the set of points on and below the graph of f . Then

f is a concave function ⇐⇒ A is a convex set

Similarly, let B be the set of points on and above the graph of f . Then

f is a convex function ⇐⇒ B is a convex set

(e) Aside. We probably wont use this theorem too frequently, but it is another tool to help with
concavity/convexity proofs. It may occasionally be easier to prove that the set of points
above/below a graph is a convex set that a proof via the definition. Further, the theorem
may help visualize what we mean by concavity and convexity.

(f) Definition. Let f : D → R where D is a convex subset of Rn. A function is strictly concave
if and only if for all x0,x1 ∈ D 3 x0 6= x1 and t ∈ (0, 1):

f
(
tx0 + (1− t)x1

)
> tf(x0) + (1− t)f(x1)

A function is strictly convex if and only if for all x0,x1 ∈ D 3 x0 6= x1 and t ∈ (0, 1):

f
(
tx0 + (1− t)x1

)
< tf(x0) + (1− t)f(x1)

(g) Aside. Note that several things changed between our definitions. First, we must be sure to
state that we aren’t consider to equivalent points. Second, t must be strictly between zero and
one (so all of our weight can’t be on a single point). Finally, the inequality becomes strict.
Note that by this definition, the absolute value function is not strictly convex. Rather than
employing definitions and graphs/sets, more frequently we will use calculus criteria to establish
concavity/convexity.

(h) Theorem. Let D be a convex, non-degenerate interval on R, such that on the interior of D, f
is twice continuously differentiable. Then the following statements are equivalent:

i. f is concave

ii. f ′′(x) ≤ 0 for all non-enpoints x ∈ D.

iii. For all x0 ∈ D, f(x) ≤ f(x0) + f ′(x0)(x− x0)
Further, we can relate strict concavity to the second derivative:

iv. If f ′′(x) < 0 for all non-endpoints x ∈ D, then f is strictly concave

(i) Aside. The first two points are what we will use most frequently and are probably the critera
for which you are most familiar. The third critera give us another way to picture concavity–the
tangent line at a point must lie above the graph:
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Finally, note that the the third point is a conditional, NOT a bidcondional. A counter-example
is y = −x4. This is a strictly concave function, but its derivative at 0 is 0.

(j) Theorem. Let D be a convex, non-degenerate interval on R, such that on the interior of D, f
is twice continuously differentiable. Then the following statements are equivalent:

i. f is convex

ii. f ′′(x) ≥ 0 for all non-enpoints x ∈ D.

iii. For all x0 ∈ D, f(x) ≥ f(x0) + f ′(x0)(x− x0)
Further, we can relate strict convexity to the second derivative:

iv. If f ′′(x) > 0 for all non-endpoints x ∈ D, then f is strictly convex

(k) Aside. This is all well and good for single-variable functions, but what about multivariable
functions? We need to extend our concept of first and second derivatives, which lead us to the
gradient and the Hessian matrix.

(l) Definition. Let f be a twice continuously differentiable function, f : D → R, where D ⊆ Rn

and R ⊆ R. Then the gradient of f , denoted ∇f(x) is defined as the row vector of 1st-order
partial derivatives:

∇f(x) =
[
∂f(x)
∂x1

. . . ∂f(x)
∂xn

]
The Hessian of f , denoted H or H, is the matrix of 2nd-order partial derivatives:

H =


∂2f(x)
∂x1∂x1

∂2f(x)
∂x1∂x2

. . .

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2∂x2

. . .

...
. . .


(m) Theorem. Let D be a convex subset of Rn with a non-empty interior on which f is twice

continuously differentiable. Then

• H is negative semi-definite =⇒ f is concave

• H is negative definite =⇒ f is strictly concave

• H is positive semi-definite =⇒ f is convex

• H is positive definite =⇒ f is strictly convex

(n) Aside. The critera from definiteness came up in linear algebra; recall our interpretation using
second order total differentials for the intution.

(o) Example. Consider the function f(x, y) = ln(x) + ln(y). We can establish that this function is
strictly concave over it’s domain R2

++ (note that this notation indicates we are only considering
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strictly positive values in R2:

f(x, y) = ln(x) + ln(y) (the function)

∇f(x, y) =
[
1
x

1
y

]
(the gradient)

H =

[
− 1
x2

0
0 − 1

y2

]
(the Hessian)

Recall first our notion of leading principle minors (note that these are determinant bars):

|H1| =
∣∣∣∣− 1

x2

∣∣∣∣ (the first LPM)

= − 1

x2
< 0 (simplifying)

|H2| = |H| (the second LPM)

=
1

x2y2
> 0 (simplifying)

Thus, since our leading principle minors alternate in sign, beginning with a negative, the matrix
is negative definite, implying our function is strictly concave.

(p) Theorem. Let f be a concave function such that f : D → R, where D ⊆ Rn and R ⊆ R.
Let g be an increasing, concave function, g : R → R. Then the composite function defined as
(g ◦ f)(x) = g(f(x)) is a concave function.

(q) Example. This is a relatively straightforward theorem to prove:
To show: (g ◦ f)(tx + (1− t)y) ≥ t(g ◦ f)(x) + (1− t)(g ◦ f)(y)
Proof

Let x,y ∈ D and t ∈ [0, 1] (by hypothesis)

Consider (g ◦ f)(tx + (1− t)y) (the composite)

= g
(
f(tx + (1− t)y)

)
(by def. of the composite)

≥ g
(
tf(x) + (1− t)f(y)) (by f concave and g increasing)

≥ tg(f(x)) + (1− t)g(f(y)) (by g concave)

= t(g ◦ f)(x) + (1− t)(g ◦ f)(y) (by def. of the composite)

�

(r) Theorem. Let f be a convex function such that f : D → R, where D ⊆ Rn and R ⊆ R.
Let g be an increasing, convex function, g : R → R. Then the composite function defined as
(g ◦ f)(x) = g(f(x)) is a convex function.

5. Quasiconcavity and Quasiconvexity

(a) Aside. Concavity and convexity are very helpful concepts when we’re dealing with unconstrained
optimization. As economists, however, we deal with constrained optimization more frequently.
Under constrained optimization, we can relax our assumptions about concavity and convexity,
employing a weaker notion.

(b) Definition. Let D be a convex subset of Rn. Then the function f : D → R is quasiconcave if
and only if for all x0,x1 ∈ D and t ∈ [0, 1],

f(tx0 + (1− t)x1) ≥ min
{
f(x0), f(x1)

}
11



(c) Example. Consider the level sets from a function with domain R2
+ and the graph of a function

with domain R:

x2

x1

x0

x1

x1t

x2t

f(x)

xx1 xt x0

On the left graph, we pick two points, x0 and x1, and plot the corresponding level sets. Any
point we pick on the convex combination line between x0 and x1 (denoted here by the ordered
pair (x1t, x2t)) will lie on a level set at least as high as the one x0 is on. On the right graph,
we picked two points x0 and x1 and evaluate the function at each. Any point we pick on the
convex combination line (denoted here as xt) will correspond to a function value at least as high
as the function evaluated at x1. Both of these functions are quasiconcave.

(d) Definition. Let D be a convex subset of Rn. Then the function f : D → R is quasiconvex if
and only if for all x0,x1 ∈ D and t ∈ [0, 1],

f(tx0 + (1− t)x1) ≤ max{f(x0), f(x1)}

(e) Aside. Consider the graphs above. The level sets on the left do not represent a quasiconvex
function–think about picking a point on the right-most part of the lower level set (the one
associated with x0), and the upper-most part on the upper level set (the one associated with
x1). The tangent line would cut above the upper level set, violatin the definition. The function
on the right graph, however, is quasiconvex, as every point on the tangent line corresponds to
a functional value less than f(x0).

(f) Example. Consider the level sets for a function with domain R2
+ (note that the function increases

as we move right and up):

x2

x1

x1

x0
x2t

x1t

In this graph, we pick two points, x0 and x1, and plot the corresponding level sets. any point
we pick on the convex combination line (once again denoted (x1t, x2t)) will lie on a level set no
higher than the one associated with x0.
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(g) Example. We can show that the function f(x, y) = min{x, y}, defined on R2, is quasiconcave
but not quasiconvex using the applicable definitions.

• Lemma 1 (L1): tx+ (1− t)y ≥ min{x, y} ∀t ∈ [0, 1]

• Lemma 2 (L2): min
{

min{w, x},min{y, z}
}

= min{w, x, y, z}
To show: f(xt, yt) ≥ min{f(x1, y1), f(x2, y2)}
Proof:

Let (x1, y1), (x2, y2) ∈ R2
+ and t ∈ [0, 1] (by hypothesis)

Let xt = tx1 + (1− t)x2 and yt = ty1 + (1− t)y2 (by hypothesis)

Considerf(xt, yt) = min
{
tx1 + (1− t)x2, ty1 + (1− t)y2

}
(the function)

≥ min
{

min{x1, x2},min{y1, y2}
}

(by L1)

= min
{
x1, x2, y1, y2

}
(by L2)

= min
{

min{x1, y1},min{x2, y2}
}

(by L1)

= min
{
f(x1, y1), f(x2, y2)

}
(by def. of f)

�

Thus, f(xt, yt) ≥ min{f(x1, y1), f(x2, y2)}, satisfying the definition of quasiconcavity. To prove
that the function is not quasiconvex, it suffices to provide a counter example:

Consider (x1, y1) = (1, 9) and (x2, y2) = (9, 1) and t = 0.5 (picking values)

f(x1, y1) = min{1, 9} = 1 (by def. of f)

f(x2, y2) = min{9, 1} = 1 (by def. of f)

(xt, yt) = (5, 5) (the convex combo.)

f(xt, yt) = min{5, 5} = 5 (by def. of f)

Thus, f(xt, yt) 6≤ max{f(x1, y1), f(x2, y2)} �

Remember, to prove a proposition is false, we simply need one instance where the definition is
violated.

(h) Aside. The definition is a bit unwieldy, but luckily, we have another way to think about quasi-
concavity and quasiconvexity. Recall out pictures of our level sets above. They are shaped very
particularly (convex-to or convex-away from the origin). This leads to the next characterization
of quasi-concavity/convexity:

(i) Theorem (JR THM A1.14). A function f : D → R is quasiconcave iff its superior set S(x) is a
convex set for all x ∈ D.

(j) Example. Consider again one of our level sets with our typical “indifference curve” look, where
the shaded area is the superior set:
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x2

x1

x

S(x)

If this function’s superior sets are all convex (as this one is), then the function is quasiconcave.
Note that this level set looks very similar to an indifference curve–this is no coincidence. In
fact, our assumption that “indifference curves are convex towards the origin” has a technical
mathematical definition as well: the utility function is quasiconcave. Similarly, a picture like
this corresponds to the assumption of convex preferences, discussed earlier.

(k) Example. Consider two univariate functions:

f(x)

xx1 S(x1)

g(x)

xx2S(x2)

On the left graph, the set of points in the domain that produce a function value at least as high
as f(x1) is convex (given by the shaded blue area). On the right graph, the set of points in the
domain that produce a function value at least as high as g(x2) is not convex (the shaded red
areas). Thus, the graph on the left is quasiconcave, but the one on the right is not.

(l) Theorem (JR THM A1.18). A function f : D → R is quasiconcave iff its inferior set I(x) is a
convex set for all x ∈ D.

(m) Example. Consider level sets of a function that are concave towards the origin:

x2

x1

I(x)

x

14



This inferior set is a convex set; if all inferior sets are convex, then the function is quasiconvex.
Note that we don’t use quasiconvexity nearly as much as quasiconcavity; indeed, indifference
curves that look this way would be highly irregular.

(n) Example. Consider two univariate functions:

f(x)

x1x1I(x1)

g(x)

xx2I(x2)

On the left graph, the inferior set I(x1) is a convex set (the shaded blue area), so the function
is quasiconvex. On the right, the inferior set I(x2) is not a convex set (the shaded red areas),
so the function is not quasiconvex.

(o) Definition. Let D be a convex subset of Rn. Then the function f : D → R is strictly
quasiconcave if and only if for all x0,x1 ∈ D 3 x0 6= x1 and t ∈ (0, 1),

f(tx0 + (1− t)x1) > min
{
f(x0), f(x1)

}
The function f : D → R is strictly quasiconvex if and only if

f(tx0 + (1− t)x1) < max
{
f(x0), f(x0)

}
(p) Example. Consider level sets from two different functions, one that is strictly quasiconcave, and

one that is not:

x2

x1

x2

x1

On the left, pick any two points on the level set–any convex combination that is strictly between
the two points will fall on a level set higher than first. On right right, if we pick two points on
the level set, it is necessary that the convex combination will be on a higher level set (e.g., pick
two points on the horizontal portion of the level set).

(q) Definition. Let f be a twice continuously differentiable function, f : D → R, where D ⊆ Rn and
R ⊆ R. Then the bordered Hessian, denoted H̄, is the matrix of 2nd-order partial derivatives
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bordered by the first derivatives, i.e.,

H̄ =


0 f1(x) f2(x) . . .

f1(x) f11(x) f12(x)
f1(x) f12(x) f22(x)

...
. . .


where fi(x) = ∂f(x)

∂xi
and fij = ∂2f(x)

∂xi∂xj
.

(r) Theorem (SB THM 21.19 and CW 12.26). Let f be a twice continuously differentiable function
on a convex domain D ⊆ Rn. Consider the associated bordered Hessian:

• f is quasiconcave if the second to nth order leading principle minors alternate in sign,
beginning with a negative, for all x ∈ D.

|H̄1 = 0|, |H̄2| ≤ 0, |H̄3| ≥ 0, |H̄4| ≤ 0, . . .

• f is quasiconvex if the second to nth order leading principle minors are negative for all
x ∈ D.

|H̄1 = 0|, |H̄2| ≤ 0, |H̄3| ≤ 0, |H̄4| ≤ 0, . . .

If D ⊆ Rn
+ (i.e., the domain is the non-negative orthant), then

• f is strictly quasiconcave if the 2nd to nth order leading principle minors alternate in sign
with strict inequalities, beginning with a negative, for all x ∈ D:

|H̄1 = 0|, |H̄2| < 0, |H̄3| > 0, |H̄4| < 0, . . .

• f is strictly quasiconvex if the 2nd to nth order leading principle minors are strictly negative,
beginning with a x ∈ D:

|H̄1 = 0|, |H̄2| < 0, |H̄3| < 0, |H̄4| < 0, . . .

(s) Example. Consider a function f : R2
++ → R where f(x, y) = ln(x) + ln(y). We can show that

this function is strictly quasiconcave.

H̄ =

0 1
x

1
y

1
x
− 1
x2

0
1
y

0 − 1
y2

 (the borderd Hessian)

|H̄1| = 0 (the first LPM)

|H̄2| =

∣∣∣∣∣0 1
x

1
x

0

∣∣∣∣∣ (the second LPM)

|H̄2| = −
1

x2
< 0 (evaluating)

|H̄3| =

∣∣∣∣∣∣∣
0 1

x
1
y

1
x
− 1
x2

0
1
y

0 − 1
y2

∣∣∣∣∣∣∣ (the third LPM)

= −
(

1

x

) ∣∣∣∣∣
1
x

0
1
y
− 1
y2

∣∣∣∣∣+

(
1

y

) ∣∣∣∣∣
1
x
− 1
x2

1
y

0

∣∣∣∣∣ (evaluating the determinant)

|H̄3| =
2

x2y2
> 0 (simplifying)
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Thus, for all values in our domain, the signs of the leading principle minors go: 0, strictly
negative, strictly positive. Thus, the function is strictly quasiconcave.

(t) Theorem. Let f : D → R be a concave function, where D ⊆ Rn is convex and R ⊆ R, and let
g : R→ R be an increasing function. Then

i. f is a quasiconcave function

ii. g ◦ f is a quasiconcave function

That is, concavity implies quasiconcavity, and a monotonic transformation of a concave function
is quasiconcave.

(u) Aside. It is also the case that convexity implies quasiconvexity and a monotonic transformation
of a convex function is quasiconvex, but we tend to focus on concavity and quasiconcavity in
the first-year micro sequence.

6. Homogeneity and Homotheticity

(a) Definition. A real valued function f(x) is homogeneous of degree k if and only if

f(tx) = tkf(x)

(b) Example. We can show that the functions f(x1, x2) = x31x2 + 4x21x
2
2 is homogeneous of degree 4

(HOD 4) by applying the definition:

f(tx1, tx2) = (tx1)
3(tx2) + 4(tx1)

2(tx2)
2 (evaluating at tx)

= t4(x31x2) + t4(4x21x
2
2) (by distributivity)

= t4(x31x2 + 4x21x
2
2) (factoring)

= t3f(x1, x2) (by def. of f)

The t in front is raised to the 4th power, so the function is HOD 4.

(c) Example. A function that is HOD 1 is sometimes called “linearly homogeneous,” and in the
context of production represents a constant-returns-to-scale function. For example, consider a
Cobb-Douglas production function:

F (K,L) = AKαL1−α

where K ≥ 0 and L ≥ 0. Again, we can show that it is HOD 1 by applying the definition:

F (tK, tL) = A(tK)α(tL)1−α (scaling inputs by t)

= AtαKαt1−αL1−α (distributing the exponent)

= tAKαL1−α (rearranging)

= tF (K,L) (by def. of F )

The interpretation here is that if we double inputs, we also double the output; hence “constant
returns to scale.” This will be a common assumption in a lot of macroeconomic theory for the
first year.

(d) Aside. Note that in the context of production, the degree of homogeneity determines returns
to scale. That is, if the production function is HOD > 1, then it is increasing returns to scale;
HOD < 1, it is decreasing returns to scale.
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(e) Example. If we have a demand function x∗(p,M), where p is a vector of prices and M income,
our theory will dictate that

x∗(tp, tM) = x∗(p,M)

In other words, demand is HOD 0 in prices and income. This should be fairly intuitive–if I
instaneously added a zero to every dollar bill in circulation and a zero to every price, consumers’
behavior shouldn’t change.

(f) Theorem (JR THM A2.6). If f(x) is homogeneous of degree k, then the first-order partial
derivatives are homogeneous of degree k − 1.
Proof:

Let f : D → R where D ⊆ Rn and f is HOD k (by hypothesis)

=⇒ f(tx) = tkf(x) (by def. of HOD k)

=⇒ ∂f(tx)

∂xi
t = tk

∂f(x)

∂xi
(differentiating w.r.t. xi)

=⇒ ∂f(tx)

∂xi
= tk−1

∂f(x)

∂xi
(dividing by t)

(g) Theorem (JR THM A2.7). f : D → R is differentiable, then f(x) and homogeneous of degree
k if and only if

kf(x) =
n∑
i=1

∂f(x)

∂xi
xi

Proof:

Let f : D → R where D ⊆ Rn and f is HOD k (by hypothesis)

=⇒ f(tx) = tkf(x) (by def. of HOD k)

=⇒
n∑
i=1

∂f(tx)

xi
xi = ktk−1f(x) (differentiating w.r.t. t)

=⇒
n∑
i=1

∂f(x)

xi
xi = kf(x) (evaluating at t = 1)

(h) Aside. This theorem ends up being very useful in macroeconomics during the first year. In
particular, if we have a CRS production function such as F (K,L) = AKαL1−α, then we have
the relationship:

K · FK(·) + L · FL(·) = F (K,L)

(i) Definition. Let f : D → R, where D ⊆ Rn and R ⊆ R. f(x) is homothetic if and only if there
exists a function g : D → R that is HOD k and a strictly increasing function h : R → R such
that f(x) = (h ◦ g)(x). Note that this implies all homogeneous functions are also homothetic.

(j) Example. Consider the function f : Rn
++ → R defined as

f(x) =
n∑
i=1

αi ln(xi)
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where
∑n

i=1 αi = 1 and αi > 0 for all i. We can show that this is a homothetic function.

ef(x) = exp

{
n∑
i=1

αi ln(xi)

}
(an exponential transformation)

=
n∏
i=1

exp
{
αi ln(xi)

}
(rearranging)

=
n∏
i=1

xαi
i (simplifying)

Now, we have our function g(x) that is HOD 1. The function that reverses the exponential
transformation is the natural log function, ln(y). Thus,

n∑
i=1

αi ln(xi) = ln

(
n∏
i=1

xαi
i

)

so the the function f(x) is homothetic.

(k) Aside. Homogeneity and homotheticity are related in much that same way as concavity and
quasiconcavity, in that the homogeneity is a cardinal concept, while homotheticity is an ordinal
one. Graphically, homothetic functions look like:

x2

x1

Along rays from the origin, the function’s level sets have the same slope–in the indifference
curve context, this means that the marginal rate of substitution is constant along the rays. The
difference between homogeneity and homotheticity (on the picture) is how the level sets are
denoted. If we had a CRS function (HOD 1), if we move twice the distance from the origin, the
level set is twice as high–a cardinal notion. Homotheticity preserves the shape, but does not
tell us anything about the height of the function relative to the distance between level sets.
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